Nature Genetics volume 54、pages 1919–1932 (2022)この記事を引用
20,000 アクセス
31 件の引用
54 オルトメトリック
メトリクスの詳細
CTCF(CCCTC結合因子)とコヒーシンの急性枯渇が、ドメインや構造ループのレベルで三次元(3D)ゲノムの折り畳みを実質的に混乱させるにもかかわらず、ほとんどの遺伝子の発現にわずかしか影響を及ぼさない理由は依然として不明である。 この難題に対処するために、マウス胚性幹細胞における高解像度の Micro-C および初期転写プロファイリングを使用しました。 エンハンサーとプロモーター(E-P)の相互作用は、CTCF、コヒーシン、または WAPL の急性(3 時間)の枯渇に対してほとんど感受性がないことがわかりました。 YY1 は E-P ループの構造調節因子として提案されていますが、急性 YY1 の枯渇も E-P ループ、転写、および 3D ゲノムの折り畳みに最小限の影響を及ぼしました。 驚くべきことに、生細胞の単一分子イメージングにより、コヒーシンの枯渇によりクロマチンへの転写因子(TF)の結合が減少することが明らかになりました。 したがって、CTCF、コヒーシン、WAPL、またはYY1は、ほとんどのE-P相互作用と遺伝子発現の短期維持には必要ありませんが、我々の結果は、コヒーシンがTFの標的の探索と結合をより効率的に促進する可能性があることを示唆しています。
ハイスループットの染色体立体構造捕捉 (Hi-C) ベースのアッセイにより、3D ゲノムのフォールディングに関する理解が変わりました 1,2。 このような研究に基づいて、3D ゲノムの折り畳みを少なくとも 3 つのレベルで区別することができます。 まず、ゲノムは A コンパートメントと B コンパートメントに分離されており、それぞれ主に活性クロマチン セグメントと不活性クロマチン セグメントに対応し、Hi-C コンタクト マップでは格子縞のようなパターンとして現れます 3。 第二に、タンパク質 CTCF とコヒーシンは、おそらく DNA ループの押し出し 7,8 を通じて、ゲノムを位相関連ドメイン (TAD) 4,5 と構造クロマチン ループ 6 に折りたたむのに役立ちます。 第三に、より微細なスケールでは、転写要素は E-P 相互作用やプロモーター-プロモーター (P-P) 相互作用などの長距離クロマチン相互作用に関与し、局所ドメインを形成します 9、10、11。
CTCF、コヒーシン、およびコヒーシン調節タンパク質の急性タンパク質枯渇と Hi-C またはイメージングアプローチを組み合わせたエレガントな実験により、最初の 2 つのレベル、TAD とコンパートメントの調節における CTCF とコヒーシンの役割が明らかになりました 12、13、14、15、16。 しかし、Hi-C は 3D ゲノム折り畳みの第 3 レベル、つまり転写的に重要な微細スケールの E-P/P-P 相互作用を捕捉するのには効果がありません 9,17,18。 遺伝子発現の調節における CTCF とコヒーシンの役割についての我々の理解は、主に、いくつかの発生遺伝子座に焦点を当てた遺伝子実験から得られました 19,20,21。 したがって、CTCF/コヒーシンが、いつ、どこで、どのようにE-P/P-P相互作用や遺伝子発現を調節するのかは不明のままであった。
我々は最近、Micro-C が E-P/P-P 相互作用を含む超微細 3D ゲノムフォールディングをヌクレオソーム解像度で効果的に解決できることを報告しました 22,23。 本研究では、Micro-C、クロマチン免疫沈降シーケンス (ChIP-seq)、トータル RNA シーケンス (RNA-seq)、および初期の RNA-seq24 を使用して、CTCF、RAD21 (コヒーシン サブユニット)、WAPL (コヒーシン アンローダー)または YY1(推定上の構造タンパク質 25)は、マウス胚性幹細胞(mESC)における遺伝子制御クロマチン相互作用と転写に影響を与えます。 最後に、YY1 の動態に焦点を当てたところ、TF 結合の促進におけるコヒーシンの予期せぬ役割が明らかになりました。
私たちの以前の研究では、Micro-Cを使用して、微細スケールの3Dゲノム構造が転写活性とよく相関し、E-PおよびP-P交差点で「ドット」または「ループ」(用語については「方法」を参照)を形成することを明らかにしました9。 本研究では、新しく開発されたループコーラー Mustache26 (図 1a) または Chromosight27 (拡張データ 図 1a) を使用して、mESC 内の 75,000 を超える統計的に有意なループを特定しました。これは、以前のレポート 9,26 の約 2.5 倍、約 4 倍です。 × Hi-C26,28 よりも大きい (拡張データ図 1b)。 ループアンカーでの局所クロマチン状態の分析(拡張データ図1c、d)を通じて、これらのループをコヒーシンループ(〜13,735)、E-Pループ(〜20,369)、P-Pループ(〜7,433)およびポリコームに分類しました。 -関連コンタクト(〜700)(図1a、b)、サイズの中央値はコヒーシンループで〜160 kb、E-P/P-Pループで〜100 kb(拡張データ図1e)。
75,190 chromatin dots/loops, subclassified into four primary types (Mustache loop caller26; see Methods and Supplementary Note). b, Probability distribution of loop strength for cohesin, E–P, P–P and random loops. Chromatin loop numbers are shown on the left. The box plot indicates the quartiles for the loop strength score distribution (min. = lower end of line, Q1 = lower bound of box, Q2 = line in box, Q3 = higher bound of box and max. = higher end of line). Genome-wide averaged contact signals (aggregate peak analysis (APA)) are plotted on the right. The contact map was normalized by matrix balancing and distance (Obs/Exp), with positive enrichment in red and negative signal in blue, shown as the diverging color map with the gradient of normalized contact enrichment in log10. The ratio of contact enrichment for the center pixels is annotated within each plot. This color scheme and normalization method are used for normalized matrices throughout the manuscript unless otherwise mentioned. Loop anchors are annotated as ‘C’ for CTCF/cohesin, ‘P’ for promoter and ‘E’ for enhancer. Asterisks denote a P < 10−16 using two-sided Wilcoxon’s signed-rank test. The data are presented in the same format and color scheme throughout the manuscript unless otherwise indicated (n = 37 biological replicates)9. c, Genome-wide averaged transcript counts for nascent transcript profiling. Genes are grouped into high, medium and low expression levels based on nascent RNA-seq data (gene body) and rescaled to the same length from TSS (transcription start site) to poly(adenylation) cleavage site (PAS) or TES (transcription end site) on the x axis. d, Rank-ordered distribution of loop strength against gene expression for cohesin, E–P and P–P loops. Gene expression levels for the corresponding chromatin loop were calculated by averaging the genes with TSSs located ±5 kb around the loop anchors. Loop strength was obtained from the same analysis shown in b. The distribution for each loop type was fitted and smoothed by LOESS (locally estimated scatterplot smoothing) regression. Error bands indicate fitted curve ± s.e.m. with 95% confidence interval (CI). e, APAs are plotted by paired E–P/P–P loops and sorted by the level of nascent transcription into high, mid and low levels./p>90% of CTCF peaks and 60% of cohesin peaks are significantly decreased on loss of CTCF (Padj < 0.05; Fig. 3e and Extended Data Fig. 3g). Despite the substantial loss of cohesin peaks, biochemical fractionation experiments show that the fraction of RAD21 associated with chromatin remains fairly constant 3 h after CTCF degradation (Extended Data Fig. 2f, green box). Thus, our results are in line with the widely accepted conclusion that CTCF positions cohesin43. On the other hand, loss of cohesin affects a subset of CTCF binding (Fig. 3c,d)13, resulting in ~20% reduction in the number of CTCF peaks (Fig. 3e) and a slight decrease in its global chromatin association (Extended Data Fig. 2f, blue box)./p> 0.1 µm2 s−1), which can be separated further into slow (Dslow ~0.1–2 µm2 s−1) and fast moving (Dfast > 2 µm2 s−1). Scale bar, 1 μm. f, Aggregate likelihood of diffusive YY1 molecules. Top, bar graph showing fractions of YY1 binned into bound, slow- and fast-diffusing subpopulations. Bottom, YY1 diffusion coefficient estimation by regular Brownian motion with marginalized localization errors. g, Western blots of cytoplasmic (Cyt) and nuclear proteins dissociating from chromatin at increasing salt concentrations (Extended Data Fig. 2b). A subpopulation (~30%) of YY1 stays on chromatin, resisting 1 M washes. Ins, insoluble pellet after sonication; Son, sonicated, solubilized chromatin. Percentage of total shows the signal intensity of the indicated fractions divided by the total signal intensity. Anti-histone 2B controls for chromatin integrity during fractionation. h, FRAP analysis of YY1 bleached with a square spot. Error bars are fitted curve ± s.e.m. with 95% CI. i, Slow-SPT measuring YY1 residence time. Individual molecules were tracked at 100-ms exposure time to blur fast-moving molecules into the background and capture stable binding. The unbinding rate is obtained by fitting a model to the molecules’ survival curve. Each datapoint indicates the unbinding rate of YY1 molecules in a single cell. The box plot shows quartiles of data. Error bars are mean ± s.d. j. Slow-SPT measures YY1’s residence time at multiple exposure times./p>90% depletion after 3 h of IAA treatment (Fig. 7a and Extended Data Fig. 9a). Despite the high degradation efficiency, neither YY1’s nuclear distribution nor its clustering was strongly affected after acute loss of CTCF and cohesin in either live or fixed cells (Fig. 7b,c and Extended Data Fig. 9b). This suggests that the maintenance of YY1 hubs is independent of CTCF and cohesin./p>82% of these loci were associated with promoter regions (Fig. 7f and Extended Data Fig. 9d,e). In contrast, both CTCF and WAPL depletion had a negligible effect on YY1 occupancy (Fig. 7f and Extended Data Fig. 9d,e). In biochemical fractionation analysis, we also observed a similar, though less pronounced, reduction in YY1 chromatin association after RAD21 depletion (Extended Data Fig. 9f). To test whether cohesin facilitates the target search of TFs in general, we performed spaSPT on additional TFs. We thus generated RAD21–AID cell lines stably expressing either HaloTag-conjugated SOX2 or KLF4 and found that the bound fraction of both TFs was reduced by ~20% after 3-h cohesin degradation (Extended Data Fig. 9g). These results suggest that cohesin probably facilitates chromatin binding of TFs in general./p>20% of E–P/P–P loops can cross TAD boundaries and retain high contact probability and transcriptional activity (Fig. 2)18,35; (2) only a very small handful of genes showed altered expression levels after CTCF, cohesin or WAPL depletion (Fig. 3)12,13,14,15,16; (3) CTCF and cohesin loops are both rare (~5% of the time) and dynamic (median lifetime ~10–30 min)34; (4) most of the E–P/P–P loops persist after depletion of these structural proteins (Fig. 4)39,63; (5) CTCF/cohesin generally does not colocalize with transcription loci67; and (6) E–P loops and transcription can be established before CTCF/cohesin interactions on mitotic exit71, in some cases even with no CTCF/cohesin expression36,65,66. Second, YY1 was proposed to be a master structural regulator of E–P interactions25 (Fig. 8, Model 2). However, our Micro-C data are inconsistent with this model, because acute YY1 depletion has little effect on E–P/P–P interactions or gene expression. It is still possible that YY1 specifically connects development-related chromatin loops during neural lineage commitment47, but is less important in the pluripotent state. In summary, we conclude that, in mESCs, CTCF, cohesin, WAPL or YY1 is not generally required for the short-term maintenance of most E–P interactions and the subsequent expression of most genes after acute depletion and loss of function./p>2. Full lists of DEGs are available in Supplementary Table 11./p>2). Full lists of DEGs are available in Supplementary Table 12./p> 100 & intensity > 100 & sigma < 220 & uncertainty_xy < 50; (2) merge: Max distance = 10 & Max frame off = 1 & Max frames = 0; and (3) remove duplicates enabled. This setting combines the blinking molecules into one and removes the multiple localizations in a frame./p>